为什么要用变频器控制电机?
电机是一个感性负载,它阻碍电流的变化,在启动的时候会产生电流的较大变化。
变频器,是利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装置。它主要由两部分电路构成,一是主电路(整流模块、电解电容和逆变模块),二是控制电路(开关电源板、控制电路板)。
为了降低电动机的启动电流,尤其是功率较大的电机,功率越大,启动电流越大,过大的启动电流会给供配电网络带来较大的负担,而变频器能够解决这个启动问题,让电机平滑启动,而不会引起启动电流过大。
使用变频器的另一个作用就是对电机进行调速,很多场合需要控制电机的转速以获得更好的生产效率,而变频器调速一直是它最大的亮点,变频器通过改变电源的频率以达到控制电机转速的目的。
变频技术被认为是最有效的节能方式之一,使用变频器不仅能达到科学用能、节能降耗的目的,而且能够提高自动化水平,改善工艺。
变频技术的降耗节能原理
1、变频节能:为了保证生产的可靠性,各种生产机械在设计配用动力驱动时,都留有一定的富余量。电机不能在满负荷下运行,除达到动力驱动要求外,多余的力矩增加了有功功率的消耗,造成电能的浪费,在压力偏高时,可降低电机的运行速度,使其在恒压的同时节约电能。当电机转速从N1变到N2时,其电机轴功率(P)的变化关系如下:P2/P1=(N2/N1)3,由此可见降低电机转速可得到立方级的节能效果。
2、动态调整节能:迅速适应负载变动,供给最大效率电压。变频调速器在软件上设有次/秒的测控输出功能,始终保持电机的输出高效率运行。
3、通过变频自身的V/F功能节电:在保证电机输出力矩的情况下,可自动调节V/F曲线。减少电机的输出力矩,降低输入电流,达到节能状态。
4、变频自带软启动节能:在电机全压启动时,由于电机的启动力矩需要,要从电网吸收7倍的电机额定电流,而大的启动电流即浪费电力,对电网的电压波动损害也很大,增加了线损和变损。采用软启动后,启动电流可从0--电机额定电流,减少了启动电流对电网的冲击,节约了电费,也减少了启动惯性对设备的大惯量的转速冲击,延长了设备的使用寿命。
5、提高功率因数节能:电动机由定子绕组和转子绕组通过电磁作用而产生力矩。绕组由于其感抗作用。对电网而言,阻抗特性呈感性,电机在运行时吸收大量的无功功率,造成功率因数很低。采用变频节能调速器后,由于其性能已变为:AC--DC--AC,在整流滤波后,负载特性发生了变化。变频调速器对电网的阻抗特性呈阻性,功率因数很高,减少了无功损耗。
节能分析
通过流体力学的基本定律可知:风机、泵类设备均属平方转矩负载,其转速n与流量Q,压力H以及轴功率P具有如下关系:Q∝n,H∝n2,P∝n3;即,流量与转速成正比,压力与转速的平方成正比,轴功率与转速的立方成正比。以一台水泵为例,它的出口压头为H0(出口压头即泵入口和管路出口的静压力差),额定转速为n0,阀门全开时的管阻特性为r0,额定工况下与之对应的压力为H1,出口流量为Q1。
在现场控制中,通常采用水泵定速运行出口阀门控制流量。当流量从Q1减小50%至Q2时,阀门开度减小使管网阻力特性由r0变为r1,系统工作点沿方向I由原来的A点移至B点;受其节流作用压力H1变为H2.水泵轴功率实际值(kW)可由公式:P=Q.H/(ηc.ηb)×10-3得出。其中,P、Q、H、ηc、ηb分别表示功率、流量、压力、水泵效率、传动装置效率,直接传动为1.假设总效率(ηc.ηb)为1,则水泵由A点移至B点工作时,电机节省的功耗为AQ1OH1和BQ2OH2的面积差。如果采用调速手段改变水泵的转速n,当流量从Q1减小50%至Q2时,那么管网阻力特性为同一曲线r0,系统工作点将沿方向II由原来的A点移至C点,水泵的运行也更趋合理。在阀门全开,只有管网阻力的情况下,系统满足现场的流量要求,能耗势必降低。此时,电机节省的功耗为AQ1OH1和CQ2OH3的面积差。比较采用阀门开度调节和水泵转速控制,显然使用水泵转速控制更为有效合理,具有显著的节能效果。
另外,阀门调节时将使系统压力H升高,这将对管路和阀门的密封性能形成威胁和破坏;而转速调节时,系统压力H将随泵转速n的降低而降低,因此不会对系统产生不良影响。
从上面的比较不难得出:当现场对水泵流量的需求从%降至50%时,采用转速调节将比原来的阀门调节节省BCH3H2所对应的功率大小,节能率在75%以上。与此相类似的,如果采用变频调速技术改变泵类、风机类设备转速来控制现场压力、温度、水位等其它过程控制参量,即,采用变频调速技术改变电机转速的方法,要比采用阀门、挡板调节更为节能经济,设备运行工况也将得到明显改善。
节能计算
对于风机、泵类设备采用变频调速后的节能效果,通常采用以下两种方式进行计算:
根据已知风机、泵类在不同控制方式下的流量现场运行的负荷变化情况进行计算。
以一台IS--型离心泵为例,额定流量.16m3/h,扬程50m;配备YM-4型电动机,额定功率45kW.泵在阀门调节和转速调节时的流量。根据运行要求,水泵连续24小时运行,其中每天11小时运行在90%负荷,13小时运行在50%负荷;全年运行时间在天。
则每年的节电量为:W1=45×11×(%-69%)×=kW.h
W2=45×13×(95%-20%)×=kW.h
W=W1+W2=+=kW.h
每度电按0.5元计算,则每年可节约电费8.万元。
根据风机、泵类平方转矩负载关系式:P/P0=(n/n0)3计算,式中为P0额定转速n0时的功率;P为转速n时的功率。
以一台工业锅炉使用的22kW鼓风机为例。运行工况仍以24小时连续运行,其中每天11小时运行在90%负荷(频率按46Hz计算,挡板调节时电机功耗按98%计算),13小时运行在50%负荷(频率按20Hz计算,挡板调节时电机功耗按70%计算);全年运行时间在天为计算依据。则变频调速时每年的节电量为:W1=22×11×[1-(46/50)3]×=kW.h
W2=22×13×[1-(20/50)3]×=kW.h
Wb=W1+W2=+=kW.h
挡板开度时的节电量为:W1=22×(1-98%)×11×=kW.h
W2=22×(1-70%)×11×=kW.h
Wd=W1+W2=+=kW.h
相比较节电量为:W=Wb-Wd=-=kW.h
预览时标签不可点收录于话题#个上一篇下一篇